A Program Certification Assistant Based on
Fully Automated Theorem Provers

Ewen Denney Bernd Fischer

USRA/RIACS, NASA Ames Research Center
Moffett Field, CA 94035, USA
{edenney,fisch}@email .arc.nasa.gov

Abstract

We describe a certification assistant to support formal safety proofs
for programs. It is based on a graphical user interface that hides the low-
level details of first-order automated theorem provers while supporting
limited interactivity: it allows users to customize and control the proof
process on a high level, manages the auxiliary artifacts produced during
this process, and provides traceability between the proof obligations and
the relevant parts of the program. The certification assistant is part of a
larger program synthesis system and is intended to support the deploy-
ment of automatically generated code in safety-critical applications.

1 Introduction

Program verification remains one of the most promising applications of theorem
proving, and both fully automatic and interactive provers have been used in
verification projects. However, program verification has not lived up to its early
promises and is not yet applied routinely in software development. This has
a variety of reasons, ranging from the technical difficulties the task still poses
for theorem provers, to problems in designing appropriate interfaces, and the
cultural changes that are necessary in the software development process itself.

In this paper, we describe a user interface we have developed for the appli-
cation of fully automatic first-order theorem provers (ATPs) in formal program
certification, a limited and thus more tractable variant of full program verifica-
tion. It uses the same basic technology but is concerned only with safety-relevant
aspects of a software system rather than the complete system behavior. This
limitation enables the successful application of ATPs. Program certification is
based on the idea that mathematical proofs of the individual safety properties
can be regarded as certificates which can be subjected to external scrutiny and
related to the relevant safety-critical parts of the software system. This par-
ticular purpose of the proofs requires a dedicated application-oriented interface
rather than a proof-oriented interface—in effect, we need a certification assistant
rather than a proof assistant.

The role as certification assistant puts the user interface under the influence
of two competing design principles. On the one hand, it has to “hide” the the-
orem provers from unsuspecting software engineers. On the other, it has to be
open in order to provide coarse-grained control of the certification process, to
maintain traceability between the different artifacts (in particular, source code
and verification conditions), and to ensure trust in the entire certification pro-
cess. As a consequence of this duality, the interface cannot completely separate
the ATP from the rest of the certification environment. In particular, it needs
to support the interpretation of both the input to and the output from the ATP
in terms of the application.

Our work on certification emerged from an ongoing project on automated
program, synthesis. We have developed two synthesis systems for the domains of
scientific data analysis [FS03] and state estimation [WS05], which can generate
code for safety-critical application areas like spacecraft guidance, navigation,
and control. Process standards such as DO-178B [RT'C92], however, require that
all safety-critical software be certified to a high degree of confidence. Our goal is
thus to integrate our synthesis tools with a dedicated certification environment
so that end-users can understand and trust the generated code more easily.
We adopt a browser paradigm so that users can inspect the code and interact
with the underlying prover, while being shielded from the low-level minutiae.
Although this is still work in progress, we believe that it offers potential for
increasing acceptance of code generators in safety-critical domains at NASA.

In Section 2, we introduce our automated synthesis and verification systems
and describe the certification problem we address. The system architecture has
a direct bearing on the certification interface, which is described in Section 3.
Although the system is fully automatic, users have the option of controlling the
proof process by selecting and parameterizing different provers, and inspecting
the logs of prover sessions, including the proofs themselves. This is described
in Sections 3.1 and 3.2, respectively. In Section 3.3, we describe the verification
condition browser, which is used to relate proof obligations to the synthesized
code. Section 4 describes related work on interfaces for prover-based verification,
and Section 5 outlines our future plans.

2 Background and System Architecture

Figure 1 shows the overall architecture of our extended program synthesis sys-
tem, which comprises three classes of components: the original synthesis system,
the certification extensions, and corresponding document generation extensions.
We will describe these components in some more detail in the following.

2.1 Program Synthesis

Traditionally, program synthesis has followed the proofs-as-programs paradigm:
the problem is specified as a conjecture in a suitable logic, an interactive theorem
prover like Coq, Isabelle, or NuPRL is used to construct a proof, and a func-

browser
certification & cuments

- renderer
1 o
synthesis code
system annotated code tificat
certificates
documentation L

‘ - 1

problem
spec.
1] proofs
safety ‘ VCs SVCs proofs proof ‘ proofs
: - VCG simplifier ATP
policy ‘ checker ‘
A

rewrite rules

axioms/ lemmas

domain

theory

extended synthesis system

Figure 1: Certifiable program synthesis: System architecture

tional program is extracted from that proof and then translated into the target
environment. However, this traditional, purely deductive approach to program
synthesis is notoriously difficult to scale up to large problems (cf. [ABO1]) and
full automation has remained elusive. We thus follow a schema-based synthesis
approach that combines deductive reasoning with techniques from generative
programming. Most of the components described here are hidden inside the
synthesis system box in Figure 1.

Problem Specifications. Since schema-based synthesis does not require
a logical conjecture as starting point for a proof, the code derivation can be-
gin with a specification in a more application-oriented domain-specific language.
The details of the language obviously depend on the domain of the synthesis
system, but in general it combines some target language constructs (e.g., dec-
larations) with established scientific and engineering notations (e.g., differential
equations). This allows a concise and fully declarative formulation of the prob-
lem together with some details of the desired configuration and architecture of
the code to be generated.

Schemas. A schema is a parameterized code fragment (i.e., template) to-
gether with a set of constraints that determine whether the schema is applicable
and how the parameters can be instantiated. The constraints are formulated as
conditions on a problem model, which allows the problem structure to directly
guide the application of the schemas and thus constrain the search space. The
parameters are instantiated by the synthesis engine, either directly on schema
application or by recursive calls with a modified problem. The schemas are or-
ganized hierarchically into a schema library which further constrains the search
space. Schemas represent both fundamental building blocks (i.e., algorithms)
and solution methods (i.e., theorems) of the domain; they are thus similar to
the lemmas used in interactive systems but they can contain explicit calls to a
meta-programming kernel in order to construct the code fragments.

Symbolic Computations. Symbolic computations are used to support
schema instantiation and code optimization. The core of the symbolic subsystem
is a small rewrite engine which supports associative-commutative operators and
explicit contexts. It thus allows contextual rules as for example x/x — ¢ g0 1
where — ¢ 20 means “rewrites to, provided « # 0 can be proven from the cur-
rent context C.” Expression simplification and symbolic differentiation, similar
to those in Mathematica, are implemented on top of the rewrite engine. The
basic rules are straightforward; however, vectors and matrices require careful
formalizations, and some rules also require explicit meta-programming, e.g.,
when bound variables are involved.

Intermediate Code. The code fragments in the schemas are formulated in
an imperative intermediate language. This is essentially a “sanitized” variant of
C (i.e., no pointers, side effects in expressions etc.); however, it also contains a
number of domain-specific constructs like vector/matrix operations, finite sums,
and convergence-loops.

Optimization. Straightforward schema instantiation and composition pro-
duces suboptimal code; worse, many of the suboptimalities cannot be removed
completely using a separate, after-the-fact optimization phase. Schemas can
thus explicitly trigger large-scale optimizations which take into account infor-
mation from the synthesis process. For example, all numeric routines restructure
the goal expression using code motion, common sub-expression elimination, and
memoization; since the schemas know the goal variables, no dataflow analysis is
required to identify invariant sub-expressions, and code can be moved around
aggressively, even across procedure borders.

Code Generation. In a final step, the optimized intermediate code is
translated into code tailored for a specific run-time environment. We currently
have code generators for the Octave and Matlab environments, and can also
produce standalone Ada, C, and Modula-2 code. Each code generator employs
one rewrite system to eliminate the constructs of the intermediate language
which are not supported by the target environment (“desugaring”) and a second
rewrite system to clean up the desugared code; most rules are shared between
the different code generators.

AUTOBAYES and AUTOFILTER. So far we have built two domain-specific
synthesis systems following the schema-based approach outlined above. AUTO-
BAYES [F'S03] works in the scientific data analysis domain and generates param-
eter learning programs, while AUTOFILTER [WS05] generates state estimation
code based on variants of the Kalman filter algorithm. Both systems share a
large common core (e.g., symbolic subsystem, certification subsystem, and code
generators) but have their individual schema libraries. They are implemented in
SWI-Prolog and together comprise approximately 100 kloc. Both systems work
fully automatically and can generate code of considerable size and complexity
(approximately 1500 loc with deeply nested loops) within a few seconds.

2.2 Certification

Unlike purely deductive approaches, schema-based synthesis cannot ensure “cor-
rectness-by-construction”. Since formally verifying the entire system is unfeasi-
ble, we instead validate each generated program individually; furthermore, we
concentrate on specific aspects of program safety (e.g., memory safety). The
core idea is that the schemas can be extended to simultaneously generate code
and all required annotations such that a verification condition generator can
produce proof obligations which are then discharged using an automated theo-
rem prover. The proofs, which can be validated by an automated proof checker
or prepared for human inspection, then serve as certificates. This approach is
tractable because the synthesis system has full knowledge about the form the
generated code will take and the specific safety aspect that is to be certified, so
that it can generate the appropriate annotations. However, our certification ap-
proach is not necessarily tied to synthesis and the annotations could in principle
also be added manually.

Safety Policies. A safety policy is a set of Hoare-style proof rules and auxil-
iary definitions which are designed to show that “a program does not go wrong,”
i.e., satisfies the safety property of interest [WSF02, DF03]. Safety policies can
be used to enforce both language-specific properties which can be expressed in
terms of the constructs of the underlying programming language, itself, and are
thus sensible for any program in the language, as well as domain-specific prop-
erties, which typically relate to high-level concepts outside the language (e.g.,
matrix multiplication).

We currently support five different safety policies. Array-bounds safety re-
quires each access to an array element to be within the declared bounds of the
array. Variable initialization-before-use ensures that each variable or individual
array element has been assigned a defined value before it is used. Both are
typical examples of language-specific properties. For the data analysis domain,
we can guarantee vector-norm safety (i.e., probability vectors add up to one),
and for the state estimation domain we can check proper sensor input usage
(i.e., all input variables are used in the computation of the filter output) and
matrix symmetry (i.e., covariance matrices are not skewed).

Annotated Code. The annotations are part of the schema and thus are
instantiated in parallel with the code fragments; further annotations are intro-
duced by the desugaring steps of the code generation phase. The annotations
contain local information in the form of logical pre- and post-conditions and
loop invariants, which is then propagated through the code.

VCG. The fully annotated code is then processed by a weakest precondition
verification condition generator (VCG), which applies the Hoare-rules of the
safety policy in order to generate verification conditions (VCs). The VCG has
been designed to be “correct-by-inspection”, i.e., to be sufficiently simple that
it is straightforward to see that it correctly implements the rules of the logic.
Hence, it does not implement any optimizations, such as structure sharing on
the VCs or even apply any simplifications. As usual, the VCG works backwards
through the code and verification conditions are generated at each line that can

potentially violate the safety policy.

Simplification. By design of the VCG, the generated VCs are quite com-
plex; hence, they need to be simplified before they can be discharged by an
ATP. The certification extension thus re-uses the rewrite engine of the synthe-
sizer together with a dedicated set of rewrite rules. Details can be found in
[DFS04a).

ATP. For our purposes, an ATP is a search procedure which applies the
inference rules of its calculus until it either finds a proof or fails because none
of the rules are applicable. In order to handle extra-logical operations (as, for
example, arithmetic functions), the ATP needs an additional domain theory
that specifies their intended meaning as axioms. The provers use a set of core
axioms, together with a collection of dynamically generated axioms, depending
on the particular proof task.

Proof Checking. As an alternative to formally verifying the ATPs, they
can be extended to generate sufficiently detailed proofs which can then be in-
dependently checked by a small and thus verifiable algorithm. However, due to
the lack of a standardized format, (and various other reasons [DFS04b]) there
are almost no proof checkers for high-performance ATPs, in contrast to the sit-
uation for interactive higher-order provers. We have linked our system to the
only exceptions we are aware of: the IVY system [MS00], which is based on
Otter, and the GDV verifier [SBO5].

Trusted Components. Similarly to proof carrying code [NL98|, we dis-
tinguish between trusted and untrusted components, shown in Figure 1 in red
(dark grey) and blue (light grey), respectively. Components are called trusted—
and must thus be correct—if any errors in them can compromise the assurance
provided by the overall system. Untrusted components, on the other hand, are
not crucial to the assurance because their results are double-checked by at least
one trusted component. In particular, the correctness of the certification system
does not depend on the correctness of the two largest components: the synthe-
sizer, and the theorem prover; instead, we need only trust the safety policy, the
VCG, the domain theory, and the proof checker.

2.3 Document Generation

The basic idea behind our certification approach can also be extended to human-
readable documentation. The schemas contain text templates that are instan-
tiated and composed together with the code fragments; these auto-generated
comments explain selected parts of the algorithm, give detailed derivations of
mathematical formulas, and relate program constructs and variable names back
to the specification.

In addition to the commented code, we can also generate a standardized
software design document that contains interface descriptions, administrative
information (names of files, versions, etc.), specific input and output constraints,
and synthesis and compiler warnings. The document is hyperlinked to the input
specification, the code, and any other intermediate artifacts generated during
synthesis. Since the design document is generated at synthesis time, it can

-~ AutoFilter Certification Assistant: quaternion_ds1 - Mozilla {Build ID: 2002040813}

init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions) @
4 Prover Control
7
/# Code file generated by AutoFilter ¥0. 0.1 .
74 (c) 1999-2005 ASE Group, NASA Ames Research Genter ATF Time Farameters
// Problem: IMU + SRU: nonlinear w/ quaternions r o
7¢ Source: examples/certification/quaternion. ab] Vargie .00 | T
7/ Conmand fautofalter Azioms Evidence
" “certify init
" -browser Full axoms =] [Frooke =
i ~dir /hone/fisch/public_html/
i examples/certification/quatsrnion. ab
77 Generated: Tue Jan 11 18:29:19 2005 send | stop| Resat
/i —— _— - b
proc{guaternion_dsl){ -l
const =]
// Wunber of measurements Verification Conditions

0: int m_measvars .= 3;
/7 Yumber of state varishles
1. int n_statevars := &; Show Opan VCsJ Select Al | Clear Evidence |
/4 Wumber of iteration steps Y TR R IS SRR I S A LT
2. int n_steps := 999;
/7 Sampling Interval

1 The file quaternion_ds1_init.tplog, php does not exist
3: double t := (double 1) / (double 400);

input ; . L
// standard deviation of measurement noise guaternion dsl init 000 source Not Available
4: double rtho[0 : m measvars - 1]; = 4 i
// standard deviation of process moise uaternion,_ds1_init 0002 gource Not Available
s d;“"’qéiftg'ﬁl[ggg n_statevare = 1l quaternion_ds1_init 0003 source MNot Available -
6: double u(D - 2. 0 - n_steps - 1]; I~ guaternion_ds1_init 0004 source Not Available
// anitial state variable values = i
T: double xinit[D : n_statevars - 1]; quaternion_ds1_init 0005 source MNot Available
taal val ey i X e,
8 é;\,ﬂ: ;:m:im‘:;\'?aamnj“uvaﬂ -1l guaternion_ds1_init 0006 source Mot Available
/7 initial state noise F T f
9. double xinit_noise[D : n_statevars - 1], uaternion_del_init 0007 source Not Available
/7 SEU messuements r i ini sorce Not Available
10: double z[D : n_measvars - 1, 0 : n_steps - 1]; fquaternion_ds1_init 0008 gotxce ke
output ™ guaternion dsl _init 0009 source Not Available
/7 tutput vector i n 9 -
11 duuhhpxhagdaij)uer[n 5. 0 : n_steps - 1]; guaternion_ds1_init 0010 source Mot Available
A simiin st [quaternion dsl_init 0011 source Mot Available
12: double eta[0 : n_statevars - 1| I™ guaternion_ds1_init 0012 gource MNot Available

// measurement moise vector
13: double v[0 : m_measvars -

I~ guaternion dsl init 0013 source Mot Available

J/ state variables vector (error values) s : T
14 double %[0 : n_statevars - 1], =l guaternion ds1_init 0014 source Not Available =l
i & 2 (3 @@ ODocument Done (0119 secs) P

Figure 2: Certification assistant: start-up view

include design details which would be difficult, if not impossible, to infer after
the code has been generated.

3 The Certification Assistant

The certification assistant serves three main purposes. First, it allows users to
customize and control the proof process on a high level. Second, it manages
the auxiliary artifacts produced by this process. Third, it provides traceability
between the VCs and the relevant parts of the program.

The interface mainly uses straightforward HTML as underlying technology.
This is augmented with some scripting code to support the VC-browsing de-
scribed in Section 3.3. The certification assistant consists of a few supporting
shell scripts to control the provers, some boilerplate CGI and HTML code and
a number of PHP files that are auto-generated together with the target code;
in total, this amounts to approximately 2000 lines. The generation of the PHP
files and the customization of the certification assistant itself is triggered by a
simple command line option of the synthesis system.

Figure 2 shows the startup view of the certification assistant, after the code
and supporting files have been generated. The window is split into three different
areas. The left half contains a hyperlinked version of the generated code; the line
numbers are used as labels by the VC linker. The right half contains a simple
prover control panel and the list of verification conditions below that. Initially,

-~ AutoFilter Certification Assistant: quaternion_ds1 - Mozilla (Build I1D: 2002040813}
init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions) @
- Prover Control
y
/# Code file generated by AutoFilter ¥0. 0.1 .
74 (c) 1999-2005 ASE Group, NASA Ames Research Genter ATF Time Farameters
/# Problem, INU + SRU: monlinear w/ quaternmians T -
/¢ Source exanples/certificationfquaternion. ab — Vampire (7.0) =] T
// Command. #autofilter DCTP (10.21p) ke
" “certify init DCTP (10.21p w/ CASC seflings)
7 -brovser =
7 ~dir /hone/fisch/public_html/ E-Setheo (cspO3N)
b examples/certification/quatsrnion. ab E-Setheo (csp03 W/ Flotier
7/ Generated: Tue Jan 11 18:20:13 2005 E-Sethen (csp04) “““‘J 5
E-Setheo (cspl4 w Flotien _—— =
prociguaternion dsl)(7 E-Setheo (cspDd wi TPTF) EREUR U
camat = E-Sethea (cspld wio E-prover) [
PR (P il Rl pacgrnn I~ ¢ Gandalf (-2 6) ERROR 20
/7 tmber of state varishles r gﬁ;”"a"@*”/ — ERROR 20
1. int n_statevars := 6; |
J7 WiRber of iteration steps ¢ Ofter (3.06) ERROR 20
2: int n_steps = 099; r ESMSS 21} ERROR 20
/f sampling Interval £ System On TFTF (Remote @ U. Miami) ERRUR 3
3. double t := (double 1) / ({double 400); I~ ¢ Vampire (5.0) EREOR 20
ingut £ vampire (6.0) | e
7/ standacd deviation of measurement noise [~ (Vampire (7.0} SJERROR 20
4: double cho(0D M_measvars - N ¥
4/ standard deviation of process noise uaternion_ds1_init_ 0030 source EREOR 20
P Humerri ol o poey
5 double 0 tate -4 " .
SOLE ML L ek = 1 quaternion dsl_init 0031 sowce ERROR 20
6: double ulD : 2. 0 : n_steps - 1]; r i ini
o, G L~ ¢ o p quaternion_ds1_init 0032 source PROVEN 04
7: double xinit[0 : n_statevars - 1]; I quaternion_dsl_init 0032 source PROVEN 0.4
// nitial value means = S
8: double xinit mean|0 : n_statevars - 1], uaternion_ds1_init 0034 source ERROR 20
Jf initial stat Sustenuion cui_ i NN
9: Souble XLNLE N0LseD : n statevars - 1), I~ quaternion dsl_init 0035 source ERROR 2.0
4/ SRU memsurements - " a
10: double z[D : n_measvars - 1, 0 : n_steps - 1]; uaternion_ds1_init, 0036 gouwrce ERROR 20
sutput ™ guaternion dsl init 0037 source PROVEN 0.4
/7 mutput vector e
11; double zhat dsi_filter(0 : 5. 0 : n_steps - 1]; quaternion_dsi_init 0038 source PROVEN 04
local
J/ process noise vector I~ quaternion dsl_init 0039 source PROVEN 0.4
12. double eta[0 : n_statevars - 1], bt R ¢ PROVEN 04
// measurement noise vector uaternion_ds1_init 0040 gource FROVEN 0.
13: double v[D : m_measvars - i r " ind
// state varisbles vector (error values) uiernion ds1 init 0041 source PROVEN 04 5
14: double %[0 : n_statevars - 1]; | =l
i &b 2 (3 @@ ODocument Done (0147 secs) oo

Figure 3: Certification assistant: updated view with prover results

no information is available about the proof status of any of the verification
conditions.

3.1 Prover Control

In contrast to interactive proof systems like Coq, Isabelle, or NuPRL, the user
interaction here is only concerned with the parameterization of the proof pro-
cess, but not with application of individual tactics, and the prover control panel
reflects this restricted interaction style. Different drop-down menus allow the
user to select the theorem prover and choose between various predefined ax-
iomatizations of the domain theory that are to be used for the proof attempts,
and the level of evidence (i.e., proof status, prover logs, or full proofs) that the
prover is required to supply. In addition, the user can specify the time limit
for an individual task and any prover-specific parameters that will be passed
along unchecked. The certification process is then started by selecting any or
all of the verification conditions from the list and sending the request, which
the certification assistant passes to the selected prover.

Figure 3 shows the view updated with the prover results. For each verifica-
tion condition, the current proof status is displayed, together with the elapsed
proof time, and a link to its location in the source code (cf. Section 3.3).
If evidence is produced, the status contains a link to the evidence (cf. Sec-
tion 3.2). If some proof attempts fail (e.g., the verification condition quater-
nion_ds1_init_0034), the user can resend a request with different settings or

with a different ATP.

The certification assistant serves as common interface to different first-order
ATPs in a similar spirit to how Proof General [Asp00] serves as common inter-
face for different interactive higher-order provers. However, due to the limited
interaction and the black-box style integration, the protocol requirements to
link to a prover are much simpler. In particular, we can use the TPTP syn-
tax [SS03] as common notation which is understood by most targeted ATPs
and can be easily translated for the others. Hence, only straightforward con-
trol scripts are required for the integration; we are currently also in the process
of replacing these by the control scripts used in the annual ATP system com-
petition (CASC) [Sut04]. The certification assistant currently integrates seven
different ATPs (DCTP [LS01], E [Sch02], E-Setheo [MI*97], Gandalf [Tam97],
Tvy [MSO00], Otter [MW97], Spass [Wei03], and Vampire [RV02]), most of them
in different versions, that run on the local server. In addition, it also provides
a remote link to the SystemOnTPTP proof server at the University of Miami
[Sut05], which then acts as a trusted prover component repository.

3.2 Certificate Inspection and Visualization

The certification assistant also provides access to the auxiliary artifacts that are
produced during the certification. This includes the intermediate stages in the
processing chain (generated axioms, clausal normal form etc.), prover log files,
and actual proofs, depending on the required level of evidence. These artifacts
can support, or in the absence of a proof collectively serve as, the certificate,
and can be inspected as raw text files, or using third-party tools, e.g., the GDV
derivation verifier [SB05] and the proof visualizer from the TPTP tool suite
[SS03].

3.3 VC Linker and Browser

A VC can fail to be proven for a number of reasons. First, there may of course
be an actual safety violation in the code. Second, the (generated) annotations
may be insufficient or wrong. Errors can come from any part of the schema,
or from the propagation phase: an annotation might not be propagated far
enough, or it might be propagated out of scope. Third, the theorem prover
may time-out, either due to the size and complexity of the VC, or due to an
incomplete domain theory. For certification purposes, however, it is important
to distinguish between unsafe programs and any other reasons for failure, and in
the case of genuine safety violations, to locate the unsafe parts of the program.

However, manually tracing the VCs back to their source is quite difficult as
the verification process is inherently logically complex. The VCs can become
very large and go through substantial structural simplifications, after which
they are typically [DFS04a] of the form hyp; A--- A hyp, = conc. Here, a
hypothesis, hyp, stems either from a loop invariant, an index bound, or a propa-
gated annotation, and the conclusion, conc, is either derived from an annotated

-~ AutoFilter Certification Assistant: quaternion_ds1 - Mozilla {Build ID: 2002040813}

init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions) @
e wves a4 o5 Dol AT e 0 = Prover Control =
pvéB (= n_statevars - 1) =
1d_ds1_fiTter_init(pv6?, pu68) == init ATP Time o
/ove -p-t;mxm,hl,i..it,ma Wanpire (7.0) = T
205 7% post Axioms Evidence
(forall pv7D : int & Full axioms >| |Proofs =
0 ¢= pv70 and pv70 <= n_statevars - 1) =>
(forall pvéd : int &

{0 ¢= pvb4 and pv64 <= n_statevars - 1) => Send | Stap | Reset |
1d_dsl_filter_init(pv70, pved) == init)) — - —

JH]e |

| 5 Verification Conditions
206 zpred_dsl_filter(d,) := xhatmin_dsl_filter(D, 0);
207 zpred_dsl filter (1, 0) ‘= xhatmin_dsl_filter(1, 0);
208 cpred_dsl filter (2, 0) := xhatmin del filter(z, 0}, _ShowAIVCs | SelectAl | Clear Evidence
209 zhat_ds1_Filter(0, 0) = z(0, pvs),
210 ghat”ds1Eilter (L, 0) -= z(l, p¥5),
211 zhat_dsl_filter(2, 0) := z(2, pvs); % Proof obligation generated by the AutoFilter system

/7 Update loop dependent guantities ® quaternion_ds1_init_0034

/¢ VG quaternion_dsl_init_0034

218 SEC pvs > 0) input_fermula(guaternion_dsl_init_0034, conjecture, {
(leq(0, pvS) & leq{pv5, $98) & gt (pv5, 0) &
213 phi_dsi filter(2, 1) := t + (xhatmin dei filter(3, 0) - ud, pv5)); | ¢\ [a, B] ¢ ¢
214 phiZdsiZfilter(2, 0) = t * {u(L pv5) - xhatmin_dsl_filter(d, 0)); :
215 phi_dsl filter(l, 2) = t * (u(0, pvS) - xhatmin dsl Filter(3, 0)); §1eq(l, &) 5 deqid, B) & leqid, 3} & Ieqid; 31) =
216 phiZds1"filter(l. 0) = t * (xhatmin_dsl_filter(S. O] - u(2, poS)); equal (a_selectl(h dsl_filter_init, A, B}, init))} &
ar phi_dsl_filter(D, 2) = & * (xhatman del_filter(d, D) - uil, pwS)) ¢t [c, 01 ¢ ¢
218 PphiZdslTfiltec(D, 1) .= t * (u(2 pvE) -“Fhatmin dsl _£ilter(s, M) | (leq(D, C) & leqiD, D) & legiC, 5) & leq(D, 5)) =>
ik equal(a_select3(phi_dsl_filter_init, €, D), init))) —
s
/7 Update loop dependent quantities ¢ eyt
/4 VG quaternion_dsl_inat_0034 (leqiD, BY & leq(D, F) & leq{E, 5) & leqiF, 0J) =>
219 Af(pvs > 0) equal(a_select3(dv_dsl_filter_init, B, F), init))) &
/4 VG quaternion_dsl_init_0034 ¢ (o H 1 ¢
220 dv_dsi_filter(Z, 0) := xhatmin_dsl_filter(S, 0): (leq4D, B) & leq{D, H) & leq{@, 5) & leq{H, 5)) =>
221 dv_dsl_filter (1. 0) = xhatmin ds1_filter (d. O equalfa_select3{q dsl_filter_init, @, H), init})} &
222 dv_ds1_filter(0, 0) = xhatmin_dsi_filter(3, 0] TR R
alta (leqi0, I} & leq(D, J) & leq{I, 2) & leqiJ, 2)) =>
- equal (a_selectd{r_dsl_filter_init, I, J), init))} &
M R L1 ¢ =l
% &L <2 Y a8 Document Done (0.077 secs) ==

Figure 4: Certification assistant: linking from VC

assertion or from a generated safety condition. Hence, a single VC can depend
on a variety of information distributed throughout the program.

In order to support tracing between the VCs and the source code, the VCG
adds the appropriate location information to the formulas it constructs as it
processes a statement at a given source code location. We currently use simple
line numbers as locations rather than individual subterm positions [Fra96).

The source locations need to be threaded through all stages of our certifica-
tion architecture (Figure 1), and, in particular, through the simplifier. We have
thus extended the rewrite rules used for simplification to preserve the associated
labels through the rewrite process, similar to the labeled rewrite rules used in
the Simplify prover [DNS03]. This approach requires careful “rule engineering”
to maintain the relevant location information while minimizing the scope of the
labels and thus preventing the introduction of too much noise into the linking
process. However, since each VC is generally linked to multiple statements,
the location information for the entire program needs to be maintained, even if
we just want to know whether a single line in the code satisfies a given safety
property.

Figure 4 shows how the tracing information can be used to support the
certification process. A click on the source link associated with each verification
condition prompts the certification assistant to highlight all affected lines of the
code. A further click on the verification condition link itself displays the formula,
which can then be interpreted in the context of the relevant program fragments.
This helps domain experts assess whether the safety policy is actually violated,

10

-~ AutoFilter Certification Assistant: quatemion_s1 - Mozilla {Build ID: 2002040813}
init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions) @
il That_dsl Filter (L, 0) = =(1, pwly, = 2]
211 zhat ds1_filter (2, 0) = &2 pvs); Prover Control
1/ Badste Loop dependent. quantities
212 if(p o)P g o ATF Time Parameters
213 phi_dsi_filter(2, 1) = t * (xhatmin dsi_filter(3, 0) - u(, pus)); Wanpire (7.0) | |
214 Phizdsi filter(2 0) = t * (u(l. pv5) - *hatmin_dsl_filter(d, 0)); i
218 phi_dsl filter(l, 2) := t * (u(0, pvE) - xhatmin ds]ifxltsr(i 0); Axioms Evidence
216 BRAT4S1TFilter (1. 0) 'w € + (xhatain del_Filter (5, o7 - uiz. e Full axoms =] [Frook Bl
211 phi_ds1_filter (0, 2) = t * (xhatnin_dsl filter(d, D) - uil, pub));
218 phi“del filter(0, 1) := t * (u(2. pv5) - xhatmin dslifllter(ﬁ n)),
14 |
sk Send| Swp| Reset| -
" Upate Losp dependent quantities
219 if(pvs > 0) Verification Conditions
(
220 dy_ds1_filter(2, 0) := xhatnin_dsi_filter(S, 0);
221 dvTdelfilter (1, 0) .= xhatmin dsl Filter(d, 0) Show Ml vCs | Selectal | Clear Evidence |
222 dvdsl Filter (0, 0) ‘= xhatnin dsi filter(3, 0): e
el;e [For line 220]
223 gain_dsl_filter .= pminus_dsl_filte guaternion dsl_init 0005 sowrce PROVEN 0.1
h_ds1 Filter) + = . i
e B uaternion_dst_init 0006 gouree EROVEN 01
h_dsl_filter + " i
Tpnifius_dsl_filter + trans(h_dsl_filter)))) uaternion dsl_jnit 010 source PROVEN 01
24 =hatl_dsl_filter := xhatmin dsl filter + ™ guaternion_ds1_init (032 sowce PROVEN 04
gain_dsl _filter * ot
(zhat_dsl_filter - zpred_dsl_filter); quaternion_ds1_init 0034 source ERROR 20
225 Los_dsl_filter := (1d_dsl"Filfer - ds1_Filtr * h_dsl_filter) *
R = Fil EE’“" A ML I quaternion_ds1_init 0038 source PROVEN 0.4
226 hatmin_ds1_filter := dv_dsT_filte
Pha d31 Filter * xhatl_dsi_filter;
221 pninus_dsl_filter := g dsl filfer +
phi_dsl_filter
(pFlus4sl_filtsr * trans(phi_dsl_filter));
" Eupulate Output Vel:tur
228 for(Ipvi9 = 0 statevars - 1])
229 hat, do1_filter (pu0, puS) = xhatl_dsl_filter (po30, 0):
¥
A
' =
% &L 2 (D @@ Document Done (0.07 secs) - e

Figure 5: Certification assistant: linking from code

which parts of the program are affected, and eventually how the violation can
be resolved. This traceability is also mandated by relevant standards such as
DO-178B [RTC92].

In practice, safety checks are often carried out during code reviews [NS04],
where reviewers look in detail at each line of the code and check the individual
safety properties statement by statement. Fortunately, linking works in both
directions: clicking on a statement or annotation displays all VCs to which it
contributes (i.e., which are labeled with its line number). Figure 5 shows the
result of clicking on the label for line 220; the unproven verification condition
implies that this line of code has not been cleared yet.

4 Related work

There are a number of program verification systems which use theorem prov-
ing, both automated and interactive, as the underlying technology. However,
the provers are hidden to varying degrees. Fully automated provers are typi-
cally used as black-box components in a tool chain that controls the verification
process and determines the form of the interface. Often, the interfaces follow
a compiler style, with command line parameters as inputs and error messages
as outputs (e.g., ESC/Java [FLT02, DNS03]), although an integration with a
graphical software development environment is also possible [ABT03]. Inter-
active systems, on the other hand, typically use expressive higher-order logics

11

to model the entire software within the system, relying on the built-in prover
interface to directly control and interpret the verification process.

Perfect Developer [Cro03] is a combined software development and verifica-
tion environment. The user writes annotated programs in an intermediate lan-
guage, where the annotations express a correctness specification in the design-
by-contract methodology. The programs can then be translated into a variety
of target languages, or analyzed using Hoare logic and an automated theorem
prover.

Caveat [BC103] offers similar analysis capabilities, although it operates di-
rectly on source code (as opposed to an intermediate language), with the ad-
vantage that bugs can then be directly located. The tool tries to verify that the
code is free of the usual range of safety violations (division by zero, null deref-
erencing, array out of bounds), based on Hoare logic. If the automated prover
fails, the user can start an interactive proof process using Caml as scripting
language. The developers’ stated aim is to increase the scope for interactiv-
ity and control of proof process. Users are also able to manually insert code
annotations as required. For debugging purposes, Caveat lets users interpret
failed proof obligations, and relate them to their origin. It can also generate
counter-examples.

There are very few other approaches to providing explicit traceability for a
program synthesis system. Van Baalen and others [vBR 98] use origin tracking
[vKT93] to indicate how statements in synthesized code relate to the initial prob-
lem specification and domain theory. They later built on this to present a doc-
umentation generator and XML-based browser interface that generates an ex-
planation for every executable statement in the synthesized program [WB*01].

The Proof General [Asp00] generic prover interface aims to shield users from
the low-level details of using a theorem prover. It offers a customizable user
interface, while adding functionality on top of that provided by the underlying
prover. Our aims are similar, although we target a different abstraction level.
There are also several developing higher-order proof networks (e.g., Mathweb
[FHT99]), but it is not yet clear what role they should play in a certification
assistant. The SystemOnTPTP proof service [Sut05], which we use, can be seen
as a first-order automated equivalent of these.

5 Future Work

Our current efforts focus on extending the certification system in a number
of areas. We are currently extending the markup the VCG adds to the proof
obligations in two different ways. First, we are replacing the plain line numbers
currently used as locations by individual subterm positions, similar to [Fra96].
This allows a more precise tracing. Second, and more significantly, we are
extending the VCG to augment the VCs with semantic information concerning
the interpretation of the different parts of the formula (e.g., “loop invariant
asserted in line X”). This simplifies the interpretation of the VCs for debugging
purposes and can also be used to generate high-level descriptions of the VCs.

12

Since both extensions change the structure of the location information, we now
need to correspondingly extend the interface to make use of this information.

We are also extending the interface to include specifications and design doc-
uments, thus combining our work on certification with automated safety and
design document generation [DV04]. Eventually, we aim to provide full and
seamless traceability between specification, design documentation, code, and
certificates.

Our broader aim is to develop a certificate management system along the
lines of the Programatica project [The03]. This will enable a wide range of
additional capabilities, such as support for manual sign-offs on code fragments
that violate stated safety policies.

Acknowledgments. Amber Telfer implemented a first version of the VC linking
and browsing. Phil Oh helped extend this into the current version of the certification
assistant.

References

[ABO1] A. Ayari and D. Basin. “A Higher-order Interpretation of Deductive
Tableau”. JSC, 31(5):487-520, May 2001.

[ABT03] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Héhnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The
KeY Tool. Technical Report TR 2003-05, Goéteborg University, 2003.

[Asp00] D. Aspinall. “Proof General: A Generic Tool for Proof Development”.
In Proceedings of the 6th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, Lecture Notes in Computer Sci-
ence 1785, pp. 38-42. Springer-Verlag, 2000.

[BC103] P. Baudin, G. Canet, A. Pacalet, and D. Schoen. “Caveat: a Tool for
Analysis and formal Proof of C Programs”. In Tool Ezxhibition Notes, FM
2003: 12th International FME Symposium, pp. 6-10, Pisa, Italy, 2003.

[Cro03] D. Crocker. “Perfect Developer: a Tool for Object-Oriented Formal
Specification and Refinement”. In Tool Ezhibition Notes, FM 2003: 12th
International FME Symposium, pp. 3741, Pisa, Italy, 2003.

[DF03] E. Denney and B. Fischer. “Correctness of Source-Level Safety Policies”.
In K. Araki, S. Gnesi, and D. Mandrioli, (eds.), Proc. FM 2003: Formal
Methods, LNCS 2805, pp. 894-913, Pisa, Italy, September 2003. Springer.

[DFS04a] E. Denney, B. Fischer, and J. Schumann. “An Empirical Evaluation
of Automated Theorem Provers in Software Certification”. In Proceedings of
the IJCAR 2004 Workshop on Empirically Successful First Order Reasoning
(ESFOR), 2004.

13

[DFS04b] E. Denney, B. Fischer, and J. Schumann. “An Empirical Evalua-
tion of Automated Theorem Provers in Software Certification”. International
Journal of AI Tools, 2004. Submitted for publication.

[DNS03] D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover
for Program Checking. Technical Report HPL-2003-148, HP Labs, 2003.

[DV04] E. Denney and R. P. Venkatesan. “A Generic Software Safety Doc-
ument Generator”. In Proceedings of the 10th International Conference on
Algebraic Methodology and Software Technology, AMAST’ 04, pp. 102-116,
Stirling, Scotland, 2004.

[FHT99] A.Franke, S. M. Hess, C. G. Jung, M. Kohlhase, and V. Sorge. “Agent-
Oriented Integration of Distributed Mathematical Services”. Journal of Uni-
versal Computer Science, 5(3):156-187, 1999.

[FLT02] C.Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. “Extended static checking for Java”. In L. J. Hendren, (ed.), Proc.
PLDI 2002, pp. 234-245, Berlin, Germany, June 17-19 2002. ACM Press.
Published as SIGPLAN Notices 37(5).

[Fra96] R. Fraer. “Tracing the Origins of Verification Conditions”. In Pro-
ceedings of the 5th International Conference on Algebraic Methodology and
Software Technology, AMAST’96, pp. 241-255, 1996.

[FS03] B. Fischer and J. Schumann. “AutoBayes: A System for Generating
Data Analysis Programs from Statistical Models”. J. Functional Program-
ming, 13(3):483-508, May 2003.

[LSO01] R. Letz and G. Stenz. “DCTP: A Disconnection Calculus Theorem
Prover”. In R. Gore, A. Leitsch, and T. Nipkow, (eds.), Proc. First Intl.
Joint Conf. Automated Reasoning, LNAI 2083, pp. 381-385, Siena, 2001.
Springer.

[MIT97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann,
and K. Mayr. “The Model Elimination Provers SETHEO and E-SETHEO”.
JAR, 18:237-246, 1997.

[MS00] W. McCune and O. Shumsky. “System description: IVY”. In
D. McAllester, (ed.), Proc. 17th CADE, LNAI 1831, pp. 401-405. Springer,
2000.

[MW97] W. McCune and L. Wos. “Otter—The CADE-13 Competition Incar-
nations”. JAR, 18(2):211-220, April 1997.

[NL98] G. C. Necula and P. Lee. “The Design and Implementation of a Cer-
tifying Compiler”. In K. D. Cooper, (ed.), Proc. PLDI 1998, pp. 333-344,
Montreal, Canada, June 17-19 1998. ACM Press. Published as SIGPLAN
Notices 33(5).

14

[NS04] S. Nelson and J. Schumann. “What makes a Code Review Trustwor-
thy?”. In Proceedings of the Thirty-Seventh Annual Hawaii International
Conference on System Sciences (HICSS-37). IEEE, 2004.

[Pro04] The Programatica Project Page, 2004.

www.cse.ogi.edu/PacSoft/projects/programatica.

[RTC92] RTCA Special Committee 167. Software Considerations in Airborne
Systems and Equipment Certification. Technical report, RTCA, Inc., Decem-
ber 1992.

[RV02] A. Riazanov and A. Voronkov. “The Design and Implementation of
Vampire”. Al Communications, 15(2-3):91-110, 2002.

[SB05] G. Sutcliffe and D. Belfiore. “Semantic Derivation Verification”. In
I. Russell and Z. Markov, (eds.), Proceedings of the 18th Florida Artificial
Intelligence Research Symposium. AAAT Press, 2005.

[Sch02] S. Schulz. “E — A Brainiac Theorem Prover”. Journal of AI Commu-
nications, 15(2/3):111-126, 2002.

[SS03] G. Sutcliffe and C. Suttner. TPTP Home Page, 2003. www.tptp.org.

[Sut04] G. Sutcliffe. =~ The CADE-J2 ATP System Competition, 2004.
www.tptp.org/CASC/J2/.

[Sut05] G. Sutcliffe. System on TPTP, 2005.
www.tptp.org/cgi-bin/SystemOnTPTPFormMaker.

[Tam97] T. Tammet. “Gandalf”. JAR, 18(2):199-204, April 1997.

[The03] The Programatica Team. “Programatica Tools for Certifiable, Au-
ditable Development of High-assurance Systems in Haskell”. In Proceedings
of the High Confidence Software and Systems Conference, Baltimore, MD,
April 2003. Available via [Pro04].

[vBR198] J. van Baalen, P. Robinson, M. Lowry, and T. Pressburger. “Ex-
plaining Synthesized Software”. In D. F. Redmiles and B. Nuseibeh, (eds.),
Proc 13th IEEE Conference on Automated Software Engineering, pp. 240—
248, 1998.

[VKT93] A. van Deursen, P. Klint, and F. Tip. “Origin Tracking”. JSC,
15(5/6):523-545, 1993.

[WBT01] J. Whittle, J. V. Baalen, J. Schumann, P. Robinson, T. Pressburger,
J. Penix, P. Oh, M. Lowry, and G. Brat. “Amphion/NAV: Deductive Synthe-
sis of State Estimation Software”. In Proceedings of the 16th IEEE Conference
on Automated Software Engineering, 2001.

[Wei03] C. Weidenbach. SPASS Home Page, 2003. http://spass.mpi-sb.mpg.de.

15

[WS05] J. Whittle and J. Schumann. “Automating the Implementation of
Kalman Filter Algorithms”. ACM Transactions on Mathematical Software,
2005. To appear.

[WSF02] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing Certified
Code”. In L.-H. Eriksson and P. A. Lindsay, (eds.), Proc. FME 2002: Formal
Methods—Gletting IT Right, LNCS 2391, pp. 431-450, Copenhagen, Den-
mark, July 2002. Springer.

16

